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Abstract. We report on X-ray resonance exchange and neutron scattering of metallic GdS. At the LII and
LIII absorption edges of Gd, resonance enhancements of more than two orders of magnitude over the non-
resonant magnetic scattering are observed. Polarisation analysis proves that these enhancements are due
to dipolar transitions from the 2p to the 5d states. The branching ratio between the LII and LIII edges of
2.5 suggests a polarisation of the 5d electrons in the ground state. The antiferromagnetic order is of type II
in the fcc lattice. Single crystal diffraction of hot neutrons suggests that the spin direction lies within the
(111) planes with a value for the sublattice magnetisation of 6.51(3) µB. The critical exponent for the
sublattice magnetisation has a value of β = 0.38(2) in agreement with a pure Heisenberg model. Above
TN, a sharp component persists in the critical diffuse scattering. Lattice distortions give indications for two
additional low-temperature phase transitions at about 49 K and 32 K. We argue that these transitions are
not connected to spin reorientations and discuss the possible influence of fourth-order exchange interactions.

PACS. 75.25.+z Spin arrangements in magnetically ordered materials (including neutron and spin-
polarized electron studies, synchrotron-source X-ray scattering, etc.) – 75.40.Cx Static properties (order
parameter, static susceptibility, heat capacities, critical exponents, etc.) – 78.70.Ck X-ray scattering

1 Introduction

Starting in the 60s, the magnetic properties of the rare-
earth monochalcogenides have been widely investigated.
A review is given in [1]. At room temperature, these com-
pounds have the fcc NaCl type structure. GdS is one rep-
resentative of this type of compounds. In a simple pic-
ture, Gd is trivalent (Gd3+ S2−) with one delocalised
electron per Gd atom in the conduction band giving rise
to metallic conductivity. The Gd3+ ion possesses a half-
filled 4f -shell with seven unpaired spins, leading to a 8S7/2

ground state. Due to this isotropic ground state, GdS is
thought to be a model example of a Heisenberg system.
The electronic structure of GdS has been studied with
photoemission experiments [2]; a review is given in [3].
The 4f7 states have a width of about 1.2 eV with a cen-
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ter of gravity at 8.9 eV below the Fermi energy EF. The
3p6 valence band extends from 7 eV to 2.7 eV below EF.
The metallic behaviour of GdS is due to one free elec-
tron per Gd atom of mostly d character. The conduc-
tion band starts at about 1.5 eV below EF and exhibits
crystal-field split 5d states with a separation between t2g
and eg of 1.6 eV. In the paramagnetic state, the mag-
netic moment per Gd atom is 8.2 (1) µB, which is larger
than the free ion value of 7.94 µB. This difference has
been attributed to a contribution of the conduction elec-
trons [3]. In the framework of molecular field theory, ex-
change constants for nearest and next-nearest neighbours
J1 ≈ −0.4 K and J2 ≈ −0.9 K can be estimated from the
values of the paramagnetic Curie temperature (≈ −110 K)
and the Néel temperature (≈ 60 K) of GdS [4]. Both, the
nearest- and next-nearest-neighbour exchange are antifer-
romagnetic. Besides the antiferromagnetic superexchange
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interaction, an antiferromagnetic exchange interaction of
RKKY type via the conduction d-electrons has been es-
tablished [3]. Due to the high absorption cross section of
Gd (49700 barn for 2200 m/s neutrons), there have been
no detailed neutron scattering investigations of GdS. In [5]
a magnetic structure determination by neutron powder
diffraction at 4.2 K has been reported. The authors found
antiferromagnetic order of the second kind in the fcc lat-
tice. In this type of order, the spins are parallel within
(111) planes, which are stacked in an alternating antipar-
allel sequence along the [111] direction. Unfortunately,
neither a diffraction pattern, nor a table of observed in-
tensities is given in [5]. However, the authors claim that
the moments lie within the (111) planes. Hulliger and
Siegrist [4] performed a detailed investigation of the low-
temperature phase transitions in GdS. Combining X-ray
diffraction and susceptibility measurements, they found
up to three different phases in the magnetically ordered
regime. The structural distortions are attributed to type II
antiferromagnetic order with different orientations of the
magnetic moments: a truly trigonal phase, where the cu-
bic unit cell is rhombohedrally elongated along [111] with
the magnetic moments pointing in the [111] direction, a
monoclinic phase, where the moments point in [110] di-
rections, and a monoclinic phase, which is pseudo rhom-
bohedrally squeezed along [111], for which the spins are
in the (111) planes. The authors found that the exchange
interactions are very sensitive to the stoichiometry and to
defects, which modify the lattice constants and the elec-
tron concentration. Therefore, different samples exhibit
different phases. The low-temperature phase transitions
were attributed to spin flips, which can be accounted for
by a model including anisotropic exchange interactions. It
should also be noted that below the Néel temperature, a
very pronounced field dependence of the susceptibility has
been observed in all the phases studied. Very recent mea-
surements [6] indicate that besides the bilinear exchange
interactions discussed above, fourth-order exchange inter-
actions (biquadratic and three-spin exchange) are relevant
for this compound.

The wealth of low-temperature phenomena reported
on this compound is surprising for such a system, which
we expect to be Heisenberg-like from simple arguments.
So far, the evidence for the various low-temperature mag-
netic structures has been very indirect (magnetization
measurements and X-ray diffraction). Due to the diffi-
culty to perform neutron diffraction experiments on these
compounds [5], we decided to reinvestigate the magnetic
structure of GdS employing a new technique, namely mag-
netic X-ray scattering. While non-resonant magnetic X-
ray diffraction is a very small effect compared to charge
scattering, large resonance enhancements are observed at
the rare-earth LII and LIII edges, e.g. in holmium [7], and
have been subsequently explained as resulting from elec-
tric multipole transitions with the sensitivity to the mag-
netization arising from exchange [8]. Resonance exchange
scattering (XRES) is a process described in second-order
perturbation theory and can provide spectroscopic infor-
mation about the density of states above the Fermi energy,

in addition to providing information about the arrange-
ment of the magnetic moments on an atomic scale. It is,
however, not related in a simple and direct way to the sub-
lattice magnetization, even so, under certain conditions,
such a relation can be established [9]. Besides the infor-
mation on the magnetism of GdS, our paper deals with
methodological aspects of XRES. By comparing to neu-
tron diffraction, we show that the intensity in our XRES
experiment is indeed related to the square of the mag-
nitude of the sublattice magnetization. Using polarisation
analysis, we were able to identify the relevant virtual tran-
sitions in the XRES process. A careful absorption correc-
tion allowed us to analyse the shape of the resonance curve
and explain its asymmetry. We apply the method to ob-
tain information about the magnetic structure of GdS,
the temperature dependence of the sublattice magnetiza-
tion and of the lattice distortions, and finally about the
critical behaviour close to the phase transition. A similar,
but less detailed, study has been performed on GdSe with
somewhat different results [10], which will be discussed.

2 X-ray resonance exchange scattering

In addition to non-resonant X-ray magnetic scattering dis-
cussed e.g. by Blume [11] and Blume and Gibbs [12], res-
onance phenomena occur if the X-ray energy is tuned to
the absorption edges of magnetic elements. In the non-
relativistic treatment introduced in [11,12], these reso-
nances are described in second-order perturbation the-
ory [8,13]. Electric multipole (predominantly dipole and
quadrupole) operators induce virtual transitions between
core levels and unoccupied states above the Fermi energy.
These processes become sensitive to the magnetic state
due to the difference in occupation of minority and ma-
jority bands leading to resonance exchange scattering. In-
tensity gain factors of typically two orders of magnitude
are observed for the lanthanide LII and LIII edges [7]. At
the MIV edge of actinides, this intensity gain can be as
high as seven orders of magnitude [14].

Close to the absorption edges, the elastic cross section
for scattering of photons with incident polarisation ε into
a state of final polarisation ε′ can be written as

dσ
dΩ

∣∣∣∣
ε→ε′

=
[
e2

mc2

]2 ∣∣∣∣〈fC〉ε′ε + i
λc

d
〈fM〉ε′ε + 〈fR〉ε′ε

∣∣∣∣2 .
(1)

Here re = e2

mc2 ≈ 2.818 fm denotes the classical electron
radius, λc = h

mc = 2.426 pm the Compton length of an
electron and d the lattice d-spacing. The scattering ampli-
tudes 〈fC〉, 〈fM〉 and 〈fR〉, which describe the polarisation
dependencies of charge, magnetic and resonant scattering,
respectively, are given as matrices. Here, we discuss the
case of linear polarisation, described by unit vectors per-
pendicular to the wave vectors of incident and scattered
photons k and k′. σ polarisation corresponds to the basis
vector perpendicular to the scattering plane, π polarisa-
tion corresponds to a vector in the k, k′ plane. The basis
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vectors employed here and the expression for charge and
non-resonant magnetic scattering are given in [15]. The
energy dependent amplitude fR reads in dipole approxi-
mation:

fE1
R (E) = f0(E) + fcirc(E) + flin(E) (2)

with

f0(E) = (ε′ε)
[
F 1

+1 + F 1
−1

]
fcirc(E) = i(ε′ × ε)m

[
F 1
−1 − F 1

+1

]
(3)

flin(E) = (ε′m)(εm)
[
2F 1

0 − F 1
+1 − F 1

−1

]
·

f0 is independent of the magnetic state (i.e. the conven-
tional anomalous charge scattering), while fcirc and flin

are the amplitudes connected for the special case of for-
ward scattering with circular and linear dichroism, re-
spectively. All three amplitudes have different polarisa-
tion properties. fcirc depends in a linear fashion on the
direction of the magnetic moment m, while flin depends
quadraticly on m. Therefore, for antiferromagnets, only
fcirc gives a contribution at positions in reciprocal space
separated from the main charge reflections by the mag-
netic propagation vector. flin can contribute to additional
higher-order satellites. Finally, for a simple one-level ex-
citation, the energy dependence of the amplitudes is con-
tained in the oscillator strength

F 1
M(E) =

αM/E

(E −E0)− iΓ/2
· (4)

Here E denotes the photon energy, E0 the position of
the absorption edge and Γ the resonance width. The phe-
nomenological parameter αM gives a measure of the am-
plitude of the resonance and represents the product of the
transition matrix elements.

The expression for the quadrupolar amplitude fE2
R (E)

is very lengthy and will not be reproduced here. We re-
fer to [13] and [16]. Because it is of relevance for the in-
terpretation of our polarisation-analysis experiments, we
just quote the result that for electric quadrupolar tran-
sitions, σ → σ scattering can occur at the positions of
the magnetic superstructure reflections, while according
to (3) σ → σ scattering is forbidden for fcirc at the mag-
netic Bragg positions. Due to this different polarisation
dependence, XRES from dipole transitions can be clearly
distinguished from anomalous charge scattering (3) and
from XRES involving electric quadrupolar transitions.

3 Experimental

Samples of GdS were prepared by mineralization as de-
scribed in detail in [17]. The powdered compounds, ob-
tained from a primary reaction, were pressed into pel-
lets, which were encapsulated in tungsten crucibles and
heated for three weeks at a temperature about 50 ◦C be-
low the melting temperature. Single crystals of very high
quality with a mosaic spread of a few hundredths of a

degree were prepared with a slight sulphur excess. A mi-
croprobe analysis confirmed the very good homogeneity of
the samples and gave a sulphur excess of 5%. From this
analysis, the total amount of non-gadolinium and -sulphur
constituents could be estimated to be less than 1%. From
high-energy X-ray diffraction [18], we know that the sul-
phur excess forms precipitates of GdS2 growing concur-
rently on the (111) planes of GdS. While these precipitates
can perturb macroscopic measurements, their diffraction
effects are clearly separated from the GdS signal in re-
ciprocal space. Therefore our results presented below are
representative for pure stoichiometric GdS. Ingots pre-
pared by mineralization had the shape of cylindrical rods.
From this raw material, single crystals of typical dimen-
sions 5 × 4 × 2 mm3 and bounded by (100) faces were
prepared by cleaving. The faces had the typical golden
shining metal colour. Care was taken not to expose these
single crystals to air and humidity, which results in an
oxidation process clearly visible by a change of colour.

Most magnetic X-ray scattering experiments reported
here were performed on the wiggler beamline W1 of
HASYLAB, Hamburg. The X-ray source is a multipole
wiggler with a symmetric magnet structure of 16 peri-
ods and a critical energy of 8.1 keV at a gap of 34 mm.
The X-ray beam is monochromatized by a water-cooled
Si 111 double-crystal monochromator and focussed into
the experimental station by a toroidal gold-coated mirror.
The beam size at the sample position is in the order of
2 × 4 mm2 (vertical × horizontal). With the DORIS III
storage ring operating in five bunch mode at 4.5 GeV and
100 mA, a typical flux at the sample of 2 × 1011 pho-
tons/sec is obtained at a photon energy of 9 keV. As sam-
ple environment, we used a modified liquid He cryostat,
which covers a temperature range from 1.8 to 300 K [19].
The scattered beam from the sample can be measured ei-
ther with a Ge solid-state detector or an analyser setup
as described in [20].

Additional experiments with polarisation analysis
were performed at the magnetic scattering beam line
(BL 12/ID 20) of the ESRF in Grenoble. Here, the X-ray
source was a planar undulator and the beam is tailored via
a two-mirror arrangement together with a liquid-nitrogen-
cooled Si 111 double-crystal monochromator. The sample
was mounted in a closed-cycle refrigerator. A temperature
range of 10 to 300 K could be covered in four-circle geom-
etry. For polarisation analysis, a pyrolytic graphite crystal
was employed, which has a diffraction angle 2 θ close to
90◦ for the gadolinium LII and LIII edges.

To confirm the temperature dependence of the sub-
lattice magnetisation and the magnetic structure deduced
from the X-ray experiment, and to determine the total
ordered moment, we carried out a neutron diffraction ex-
periment on a single crystal of dimensions 3.0 × 1.3 ×
1.2 mm3 at the high-flux reactor of the Institute Laue-
Langevin, Grenoble. Since the absorption cross section
of Gd amounts to roughly 40 kbarns for thermal neu-
trons, we performed this experiment with hot neutrons
of wavelength 0.47 Å on the four-circle diffractometer,
D9, employing a position sensitive area detector. At this



478 The European Physical Journal B

Table 1. Comparison of magnetic structure models for different spin orientations. The first lines give the XRES results measured
at 4 K, together with the refined values for the q-domain population. The last line compares the agreement indicator χ2 for
the 49 magnetic reflections measured with neutron diffraction at T = 15 K for the four models. The meaning of the symbols is
as follows:
2θ: diffraction angle; α: angle of incidence to (100) plane;
|Fobs|2: magnitude squared of the observed structure factor at 4 K and for 7931 eV;
σ: estimated standard deviation for |Fobs|2;��Fhklcal

��2: magnitude squared of the calculated structure factor for m ‖ (hkl).

h k l 2θ α |Fobs|2 σ
��F 111

cal

��2 ���F 211
cal

���2 ��F 011
cal

��2 ��F 100
cal

��2
5

2

1

2

1

2
42.9 37.3 664 30 727 180 683 383

7

2

1

2

1

2
60.4 41.6 1512 38 1740 1092 1825 1441

9

2

1

2

1

2
79.8 48.8 242 18 205 348 371 380

9

2

1

2

1

2
79.8 31.0 1447 36 53 1642 922 1434

11

2

1

2

1

2
102.7 44.0 454 18 6 411 252 378

11

2

3

2

3

2
112.2 35.0 1308 44 729 1406 1275 1423

q-domain population ([111]:[11 1]) 4:1 4:1 3.6:1 3.8:1

χ2 for the neutron refinement 602 2.32 160 37.9

wavelength, the absorption cross section of Gd is roughly
500 barns. Second-order wavelength contamination of the
incident beam was suppressed by an In filter. The sample
temperature was maintained by an Air Products Displex
cryorefrigerator.

4 Experimental results

4.1 Magnetic structure and energy dependence
of resonance exchange scattering

As discussed in the introduction, we expect the gadolin-
ium ions of GdS to exhibit antiferromagnetic order of the
second kind in the fcc lattice. Therefore, we searched for
magnetic Bragg reflections of type 2n+1

2 , 2n′+1
2 , 2n′′+1

2 .
Indeed, a strongly temperature-dependent Bragg signal
was found at the reciprocal lattice positions given in Ta-
ble 1. The signal vanishes above a temperature of 58 K,
which has been identified in susceptibility measurements
as the Néel temperature for this compound [6]. To ex-
clude the existence of further magnetic Bragg reflections,
linear scans were conducted in reciprocal space along the
main symmetry directions. As the result of this search,
only Bragg reflections characteristic of type-II antiferro-
magnetic order were found. To verify further the magnetic
nature of the observed signal, rocking-curve scans were
performed as a function of energy close to the LI, LII and
LIII absorption edges of gadolinium. At the LI absorption
edge, the magnetic signal is extremely difficult to observe

and we were not able to detect any resonance behaviour.
For the energy scans at the LII and LIII absorption edges,
a Ge detector with an energy resolution of 250 eV was
employed. This enabled us to separate the elastic signal
from fluorescence scattering and to resolve the structure
of the fluorescence lines. Figure 1 shows energy spectra of
the fluorescence signal in the vicinity of the LII and LIII

edges. In these scans, the elastic background is negligible
compared to the fluorescence signal. During energy scans
at the LIII absorption edge, it is mainly the Lα component
that changes in intensity, while this component stays con-
stant around the LII absorption edge. At the LII edge, the
dominant component is the Lβ1 fluorescence. As a con-
sequence of these observations, the energy dependence of
the absorption at the LII and LIII edges was monitored
through the signal of the Lβ1 and Lα fluorescence lines, re-
spectively. From the fluorescence signal, the energy depen-
dence of the mass-absorption coefficient can be deduced
as detailed in Appendix A. This mass-absorption coeffi-
cient was used to correct the Bragg signal as a function
of energy. Note that a reliable absorption correction is es-
sential to obtain the correct shape of the resonance line
and the correct branching ratios, i.e. the ratio between
the resonance enhancements at the LII and LIII absorp-
tion edges. The absorption correction is non-trivial due to
the strong energy dependence of the mass-absorption co-
efficient within the white line. However, we have carefully
cross-checked our absorption corrections and are confident
of the results. Figure 2a and b show the resonance be-
haviour of the Bragg signal obtained at the 9

2
1
2

1
2 position
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Fig. 1. Energy spectra of the fluorescence signal in the vicinity
of the LII and LIII absorption edges. For clarity, the scans at
different energies have been displaced vertically by a constant
amount.

for the LII and LIII absorption edges, respectively. The
data are corrected for absorption, which does not com-
pletely remove the asymmetry of the resonance line shape
obtained in the raw data. As can be seen in Figure 2, the
high energy wings of the corrected resonance curves are
clearly suppressed as compared to the low energy wings.
This asymmetry can be attributed to an interference be-
tween resonant and non-resonant magnetic scattering. If
we follow references [8] and [13], the cross section can be
written in the form

dσ
dΩ
∼

∣∣∣∣∣∣∣Ac + i

AM +
AR

E

1

(E −E0) + i
Γ

2


∣∣∣∣∣∣∣
2

(5)

with obvious abbreviations AC, AM and AR for the am-
plitudes. If we assume that charge scattering (resonant or
non-resonant) is negligible at the position of the magnetic
Bragg reflections and that AM and AR are real (second
term of equation (10) of reference [13]), then the cross
section assumes the following form:

dσ
dΩ
∼ A2

M +
A2

R

E2

1

(E − E0)2 +
(
Γ

2

)2

+ 2AM
AR

E

E −E0

(E −E0)2 +
(
Γ

2

)2 ·

(6)

This functional form of the cross-section has been fitted to
the absorption-corrected resonance curves plotted in Fig-
ure 2. A convolution with the experimental energy resolu-
tion of the monochromator (about 4 eV) has been taken
into account. The results of the refinements are given in
Table 2. At both edges, the resonance energy coincides
within the estimated standard deviations (ESD) with the
arithmetic average between the energy of the absorption
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Fig. 2. (a) Integrated intensity versus energy for the 9/2 1/2
1/2 magnetic Bragg reflection close to the LII absorption edge.
The temperature was 4 K. The solid line shows the result of a
refinement as described in the text. The dashed line shows the
linear absorption coefficient, which we obtained from measure-
ments of the fluorescence yield. (b) Same as Figure 2a but at
the LIII edge.

edge and the energy of the white line. The resonance level
width at the two edges is comparable since the ESD given
in Table 2 does not take into account the uncertainties
in the energy resolution of the monochromator. The aver-
age level width of 2.5 eV corresponds to a lifetime of the
exited state of 0.26 fs, according to the Heisenberg uncer-
tainty relation. The branching ratio, i.e. the ratio between
the absorption corrected maximum resonance intensity at
the LII- and LIII-edge is approximately 2.5. The resonance
enhancement at the LIII-edge, i.e. the ratio between the
maximum intensity in resonance and the intensity for non-
resonant magnetic scattering, is of the order of 100.
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Table 2. Spectroscopic data for the resonance behaviour of GdS at the
9

2

1

2

1

2
magnetic Bragg reflection at 2 K. The meaning

of the symbols is as follows:
EE: Absorption-edge energy (point of inflection; normalised to tabulated values);
EWL: White-line energy (absorption maximum);
EO: Resonance energy (compare (4));
Γ : Resonance-level width (compare (4));
Imax: Maximum intensity in resonance.

Edge EE EWL EO Γ Imax Resonance
[eV] [eV] [eV] [eV] [a.u.] enhancement

LII 7930.0(8) 7932.0(6) 7931.1(1) 2.2(2) 820(45) 270
LIII 7243.0(5) 7246.2(7) 7245.0(1) 2.8(2) 315(11) 105

4.2 Polarisation analysis of resonance exchange
scattering

In order to determine whether dipolar or quadrupolar
transitions are involved in the resonance behaviour, we
performed polarisation-analysis experiments at beamline
ID 20 of the ESRF. A pyrolytic graphite crystal with a mo-
saic width of about 0.3 degree has been employed. For this
crystal, the 006 Bragg reflection is diffracted at an angle
of 87 degrees at the energy of the Gd-LII-resonance. The
crystal acts as nearly perfect polarisation analyser, since
the polarisation factor for π-π-scattering amounts to less
than 3% of the polarisation factor of σ-σ-scattering at this
angle. Moreover, since the mosaic spread of the analyser is
large compared to the horizontal and vertical divergences
of the undulator radiation, the total scattered intensity
can easily be collected. Since, in addition, the polarisation
of the incident beam was larger than 99.5%, we could ne-
glect all corrections due to the finite incident polarisation
and the finite efficiency of the polarisation analyser. Fig-
ure 3 shows polarisation-analysis scans of the 5

2
1
2

1
2 Bragg

peak at 20 K. In resonance at 7931 eV, the scattering is
nearly exclusively σ → π. However, in the pre-edge region
about 5 eV below the resonance, we could also observe a
signal in the σ → σ polarisation channel, see Figure 3b.
The temperature dependence of this resonance suggests
its magnetic nature. According to Section 2, this indicates
that the dominant resonance effect is due to dipolar tran-
sitions from the 2p-states to the 5d conduction electron
band. However, at about 7926 eV, a small quadrupolar
resonance for transitions from the 2p to the 4f states can
be observed. The quadrupolar resonance enhancement is
about a factor 300 smaller than the dipolar one. Table 3
gives the polarisation dependence of several other reflec-
tions. In all cases, the σ → π channel is clearly dominant.

4.3 Temperature dependence of the sublattice
magnetization

The temperature dependence of the magnetic 9
2

1
2

1
2 re-

flection has been measured in resonance at the LII-edge
(7931 eV). We assume the sublattice magnetization to
be proportional to the square root of the integrated in-
tensity of the magnetic Bragg reflections. This assump-
tion is non-trivial since resonance exchange scattering is
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Fig. 3. Polarisation analysis scans of the 5
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2 peak of GdS

at 20 K. (a) σ → π channel at 7931 eV (≈ LII edge); (b) σ → σ
channel at 7926 eV (below edge); (c) σ → σ channel at 7931 eV.

a second-order process and not directly related to simple
thermodynamic quantities such as the sublattice magne-
tization (compare however [9]). To verify this assumption
for our case of GdS, we have performed an additional neu-
tron diffraction experiment. In the insert of Figure 4, we
compare the temperature dependence obtained with X-
ray resonance exchange scattering and neutron diffraction.
The temperature dependence is strictly identical, which
shows that with XRES, we have a measure of the sublat-
tice magnetization for GdS. This sublattice magnetization
follows very nicely a mean-field function for spin S = 7

2
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Table 3. Polarisation analysis of magnetic Bragg scattering
from GdS at 16 K in resonance at the LII edge. The tabulated
values are observed intensities in arbitrary units, corrected for
absorption and Lorentz-factor (|Fobs|2).

Reflection Bragg-Angle σ→ σ σ → π

7926 eV 7931 eV

�
3

2

1

2

1

2

�
13.49 0.0002 0.1026

�
5

2

1

2

1

2

�
21.44 0.0005 0.1314

�
7

2

1

2

1

2

�
30.15 0.0011 0.3219

�
9

2

1

2

1

2

�
39.85 0.0024 0.3292

�
11

2

1

2

1

2

�
51.27 − 0.4019

as is plotted in Figure 4. In order to determine the criti-
cal behaviour close to the phase transition, we have taken
many more data points in the X-ray experiment for tem-
peratures between 55 and 60 K. The result is plotted in
Figure 5. The inset shows the temperature variation of
the integrated intensity as obtained from a fit assuming
a Gaussian line shape (full diamonds) and from a simple
summation of the intensity over the scan range with back-
ground correction (open circles). Below 57.6 K, the two
methods give identical results. Above 57.6 K, a Gaussian
fit is no longer appropriate, since a line broadening is ob-
served indicating the presence of magnetic critical diffuse
scattering. However, the statistical quality of the data was
not sufficient to separate clearly the Bragg and the diffuse
components in this temperature range. Therefore, data
very close to the Néel temperature had to be excluded
from the determination of the critical exponent. Figure 5
shows the remaining data of the reduced sublattice magne-
tization versus reduced temperature in a double logarith-
mic plot. The straight line corresponds to an exponent of
β = 0.378(20) in the expression m ∼ τβ with m = M/Ms,
τ = TN−T

TN
. HereM , Ms and TN denote the sublattice mag-

netization, the saturation value of the sublattice magne-
tization and the Néel temperature, respectively. The Néel
temperature was determined from this refinement to be
TN = 57.72(3) K. For τ > 0.06, the data deviate from the
power law. These data were excluded from the fit.

The measurements of the temperature dependence re-
ported so far have been performed without an analyser
crystal, i.e. the Bragg diffracted signal from the GdS sam-
ple was measured with a detector of sufficient aperture
to insure proper integration for each point in a rocking
curve scan. In an effort to investigate the critical behaviour
in more detail, we performed additional experiments at
beamline ID 20 of the ESRF using a silicon 111 analyser
in the scattered beam in order to improve the reciprocal
space resolution. Our hope was that with the improved
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Fig. 4. Reduced sublattice magnetization versus tempera-
ture. The open circles show the temperature dependence of the
square root of the integrated intensity of the 9/2 1/2 1/2 reflec-
tion in the LII resonance, normalized to its saturation value.
The solid line represents mean-field behaviour for S = 7/2
and TN = 57.72 K. Inset: Comparison of XRES and neutron
data in reduced coordinates for the sublattice magnetization
m = M/Ms and the reduced temperature τ = T/TN.
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momentum space resolution, the Bragg signal could be
better separated from magnetic diffuse scattering. During
these measurements, we discovered that even well above
the Néel temperature a non-vanishing resolution-limited
signal was observable at the position of magnetic Bragg
reflections 5
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1
2 , 7

2
1
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1
2 , 9

2
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1
2 . This inten-

sity is essentially temperature independent (up to 200 K,
the limit of our measurement). It shows no resonance at
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Fig. 6. Longitudinal scan (θ − 2 θ) at the 7
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1
2

position for a temperature of 57.3 K, 0.27 K above TN. The solid line shows a
fit of a broad Lorentzian and a sharp Lorentzian-squared component, compare dot-dashed and dashed lines, respectively. Both
components were convoluted with the instrumental resolution function.

the Gd L edges and its intensity is comparable with the
non-resonant magnetic intensity in the limit T → 0. A pos-
sible explanation for this signal is a weak remaining λ/2-
contribution from charge reflections. In order to obtain
the true XRES signal, we have calculated a difference
signal to the high temperature data. With a procedure
similar to the one described above, a critical exponent
of β = 0.384(5) was determined. Again, due to the lim-
ited statistical accuracy of our data, a clear separation of
Bragg and magnetic diffuse scattering turned out to be
difficult. We were not able to determine the critical ex-
ponents γ and ν for susceptibility and correlation length,
respectively. However, we observed that above the Néel
temperature, the magnetic signal could not be described
by a one-component line shape alone. This is depicted
in Figure 6, which shows a longitudinal scan at the 7

2
1
2

1
2

position of the GdS crystal 0.27 K above the Néel tem-
perature. The data could only be fitted by assuming a
two-component line shape with a sharp component hav-
ing the width and shape of the low temperature Bragg
signal remaining even above TN.

4.4 Temperature dependence of the lattice

Figure 7a and b show the temperature dependence of the
full width-half maximum (FWHM) and the position of the
magnetic 9

2
1
2

1
2 and the charge 400 Bragg reflection. Mea-

surements at the 400 have been performed up to 80 K.
Between 80 K and 52 K, the lattice shrinks with a linear
temperature dependence. No anomaly can be detected at
the Néel temperature. At temperatures below 20 K, the
crystal lattice remains essentially temperature indepen-
dent. However, two clear anomalies can be seen in both
the position and in the width of the charge and magnetic
reflections at 32 K and 49 K. The measurements shown

in Figure 7 have been made with medium resolution on
beamline W1 at HASYLAB. With this resolution (about
10−3 Å−1) a splitting of the 9

2
1
2

1
2 Bragg reflection could

not be detected. However, the temperature dependence of
the peak width suggests that such a splitting is indeed
present. We have performed additional scans with higher
resolution employing a silicon 111 analyser at the beam-
line ID 20 of the ESRF at the magnetic 5

2
1
2

1
2 , 11

2
1
2

1
2 and the

charge 511 reflections. Figure 8 shows a series of rocking
curve scans performed on the 11

2
1
2

1
2 reflection for temper-

atures between 60 and 20 K. It can be clearly seen that
the peak splits in an intermediate temperature range be-
tween 32± 2 and 47± 2 K. This splitting is more obvious
in the contour plot in Figure 9. Its elongated shape is due
to the mosaic width of 0.09 degrees. At 40 K, this peak
splits along the

[
110
]

direction. The splitting amounts to
about 0.03 degree.

4.5 Direction of the magnetic moment

In Table 1, the observed magnetic Bragg reflections are
given. They were all measured at a photon energy of
7931 eV (LII resonance). For all reflections, the plane of
diffraction was the

(
011
)

plane. Integrated intensities have
been determined from rocking curve scans. They were cor-
rected for the Lorentz factor and absorption according to

|Fobs|2 = sin 2θ
(

1 +
sinα
sinβ

)
Iobs. (7)

Here, Fobs denotes the magnetic structure factor in the
arbitrary units of the measurement, Iobs the measured in-
tegrated intensity, 2θ the diffraction angle and α and β
the angles between the cleaved (100) face of the crys-
tal and the incident and diffracted beams, respectively.
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Fcal =
X
j

m′j eiQ·rj =

8>>><
>>>:

8m′

2
41− (−1)

h+ k

2 − (−1)

h+ l

2 − (−1)

k + l

2

3
5 for h, k, l =

2n+ 1

2
,

2n′ + 1

2
,

2n′′ + 1

2

0 otherwise.

(8)

0.04

0.06

0.08

0.1

-3.5

-3.48

-3.46

0 10 20 30 40 50 60

FWHM [deg.]

position [deg.]

F
W

H
M

 [
de

g.
] P

osition [deg.]

T [K]

GdS
9/2 1/2 1/2

(a)

0.08

0.1

0.12

0.14

-0.28

-0.26

-0.24

-0.22

0 10 20 30 40 50 60

FWHM

position

F
W

H
M

 [
de

g.
] position [de

g
.]

T [K]

GdS  4 0 0

(b)

Fig. 7. (a) Full width at half maximum and position of the
magnetic 9/2 1/2 1/2 peak as a function of temperature.
(b) The same for the charge 400 reflection.

During the measurements, the beam polarisation was ap-
proximately 94%. Given this high degree of polarisation,
we neglected any polarisation factor. Since the beam size
was small compared to the crystal dimensions, we also ne-
glected any geometrical factors. This might be a crude ap-
proximation since the beam was certainly not homogenous
and will lead to systematic errors in the observed structure
factor, which are expected to be several times the esti-
mated standard deviation calculated on purely statistical
grounds. The measured intensities were used to determine
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Fig. 8. Series of rocking curve scans of the 11
2

1
2

1
2 peak for

temperatures between 60 K and 20 K. For clarity, the scans
have been displaced vertically by a constant amount.

the direction of the magnetic moment in GdS, assuming a
collinear spin structure. For an antiferromagnetic type-II
structure, for which the moments in the (111) planes are
parallel and successive planes are coupled antiferromag-
netically, the magnetic structure factor, not including the
Debye-Waller-factor, can be calculated as follows:

see equation (8) above
Here, the sum runs over all sites j within the magnetic unit
cell, m′j denotes the component of the sublattice magne-
tization vector visible in the diffraction experiment, rj is
the vector from the origin of the magnetic unit cell to the
corresponding magnetic atom and Q is the scattering vec-
tor. From our polarisation analysis experiment, we know
that the observed XRES signals are due to dipolar tran-
sitions. According to (3), the structure factor for σ → π
dipolar transition is proportional to

F ∼ (ε′ × ε) m = k̂′m =: m′ (9)

i.e. in our experiments, we obtain information about the
component of the sublattice magnetization parallel to the
wave vector of the diffracted beam only.
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Table 4. Magnetic neutron Bragg reflections of GdS at 15 K. Fcal is for a type-II antiferromagnetic with spins perpendicular
to [111] and propagation vector 0.5 0.5 0.5.

h k l Fobs Fcal h k l Fobs Fcal

2.5 0.5 0.5 117.8(0.8) 115.0 5.5 3.5 1.5 26.2(3.0) 27.7
4.5 0.5 0.5 60.0(0.7) 61.3 5.5 −0.5 3.5 29.4(2.0) 27.6
6.5 0.5 0.5 23.0(3.6) 26.5 5.5 −2.5 −0.5 30.1(2.0) 28.3
2.5 2.5 0.5 91.7(0.9) 93.3 5.5 1.5 −2.5 30.7(1.4) 27.7
2.5 0.5 −1.5 86.6(1.1) 86.4 2.5 2.5 2.5 79.6(3.2) 77.0
4.5 2.5 0.5 51.2(1.5) 52.1 2.5 −1.5 2.5 73.4(2.2) 72.4
4.5 0.5 −1.5 51.1(1.5) 50.5 2.5 −1.5 −1.5 75.1(1.1) 76.2
6.5 2.5 0.5 33.0(3.0) 22.5 4.5 2.5 2.5 43.8(1.7) 44.2
6.5 0.5 −1.5 21.7(2.8) 22.7 4.5 −1.5 2.5 39.9(1.8) 43.0
4.5 4.5 0.5 35.4(1.6) 31.3 4.5 −1.5 −1.5 42.9(2.6) 43.7
4.5 0.5 −3.5 30.4(2.2) 32.3 6.5 2.5 2.5 31.1(3.2) 19.1
6.5 0.5 −3.5 19.1(4.9) 14.7 6.5 −1.5 2.5 23.7(3.4) 19.3
1.5 1.5 1.5 129.1(1.0) 128.4 6.5 −1.5 −1.5 7.9(2.3) 19.9
1.5 −0.5 1.5 119.5(0.8) 119.5 4.5 4.5 2.5 24.6(2.5) 26.6
1.5 −0.5 −0.5 106.5(1.3) 111.4 4.5 −1.5 4.5 28.3(2.0) 26.5
3.5 1.5 1.5 82.3(2.4) 80.1 4.5 −3.5 −1.5 28.1(1.5) 29.6
3.5 −0.5 1.5 80.6(2.4) 77.4 4.5 2.5 −3.5 25.4(1.8) 26.9
3.5 −0.5 −0.5 77.5(1.0) 75.2 3.5 3.5 3.5 36.7(1.3) 38.9
5.5 1.5 1.5 39.9(1.0) 38.5 3.5 −2.5 3.5 36.8(1.3) 37.9
5.5 −0.5 1.5 38.5(1.2) 38.1 3.5 −2.5 −2.5 42.1(1.5) 43.7
5.5 −0.5 −0.5 39.2(1.0) 37.9 5.5 3.5 3.5 14.4(4.2) 19.8
3.5 3.5 1.5 54.1(2.3) 55.0 5.5 −2.5 3.5 14.3(3.7) 20.1
3.5 −0.5 3.5 52.8(1.0) 54.0 5.5 −2.5 −2.5 19.7(2.7) 22.1
3.5 −2.5 −0.5 53.9(1.3) 54.6 4.5 −3.5 −3.5 17.7(3.3) 21.0
3.5 1.5 −2.5 51.4(1.4) 52.8

Within the resolution of the present experiment, GdS
is still cubic at low temperatures. For such a highly sym-
metric structure, symmetry-equivalent domains have to
be taken into account for the calculation of the struc-
ture factor. q-domains for symmetric equivalent directions
of the magnetic propagation vector q have to be consid-
ered, as well as S-domains for different spin orientations
within a given q-domain. Four q-domains in total have to
be distinguished: q parallel to the [111], [111], [111] and
[111] direction. The structure factors for the various q-
domains can be calculated from (8) by simply renaming
the magnetic Bragg reflections. In our case of magnetic
reflections of type h

2
k
2
k
2 , only the [111] and the [111] do-

mains are visible. For every q-domain, we have to consider
S-domains, if the spin does not lie in the direction of the
magnetic propagation vector. These S-domains are due to
the threefold [111] axis. While the q-domains can be un-
equally populated due to internal strain, we assume that
the S-domains are all equally populated and add up the
corresponding intensity contributions. We end up with the
following formula for the calculated structure factor aver-
aged over the S-domains:

|Fcal|2 = Sq

[
2 +

(
3 cos2 δ − 1

)
sin ε

(
sin ε− 2

√
2 cos ε

)]
.

(10)

Here, Sq is a scaling factor for the corresponding q-
domain, δ is the polar angle between the magnetic mo-
ment and the magnetic propagation vector and ε is the
angle between k̂′ and the [100] direction. In Table 1, cal-

culated values of the squared structure-factor amplitude
are given for four directions of the magnetic moment, i.e.
the angle δ has been kept fixed, but the two scale factors
for the q-domains have been refined. As Table 1 shows,
we find a rather unequal domain population, where the
volume ratio of domains with propagation vector along
[111] is about four times larger as compared to [111] do-
mains. We attribute this to near-surface effects due to the
limited penetration depth. There are distinct differences
in the calculated values for the various models. Clearly
the model where the magnetic moment is parallel to a
[111] direction can be excluded. The differences between
the other models are not so marked and significant devi-
ations remain, which are partly due to our assumption of
a homogenous beam and of equally populated S-domains.
However, we want to stress the large differences in the
calculated intensities for the 9

2
1
2

1
2 reflection for the four

spin models shown in Table 1. This reflection has been
used to study the temperature dependence of the sub-
lattice magnetization which showed a smooth meanfield
type behaviour. If a spin reorientation occurred between
TN and 2 K, this should be visible as a large change of
the measured intensity according to Table 1. Such an ef-
fect has not been observed, which indicates that the easy
direction stays the same within all of the ordered phase of
GdS.

With the few reflection observed and the rather large
systematic errors due to geometrical factors, we can-
not unambiguously determine the spin direction from
the X-ray data. Moreover, resonance exchange scattering,
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(a)

(b)

Fig. 9. Contour plot of the 11
2

1
2

1
2 peak in the (2h, h, h) and

(h, −h, 0) plane. The temperature was 20 K for Figure 9a and
40 K for Figure 9b.

as a second order perturbation process, does not allow
us to determine the magnitude of the ordered magnetic
moment. Therefore we carried out an additional neutron
diffraction experiment at a temperature of T = 15 K. Var-
ious nuclear and magnetic reflections were scanned up to
sin(θ)/λ of 1.06 Å−1 and 0.65 Å−1, respectively. After sub-
traction of the background following Wilkinson et al., and
correction for absorption by Gaussian integration (trans-
mission range, 0.257–0.321), the data were averaged over
equivalents to give 65 unique nuclear reflections and 49
unique magnetic reflections. The relative q-domain popu-
lations were 0.237 : 0.275 : 0.258 : 0.230. Due to the S-

domain averaging, only the angle of the spin direction to
the direction of propagation and the magnitude of the spin
can be determined. Least-squares minimisation of the dif-
ference between the calculated and observed structure am-
plitudes gave best agreement for a model with the spin di-
rection perpendicular to the direction of propagation (111)
and a moment of 6.51(3) µB. This value was obtained in
a joint refinement of the nuclear and magnetic reflections
including refinement of the thermal displacement parame-
ters of both Gd and S (0.15(1) and 0.11(1), respectively).
Table 1 lists the values of the agreement indicator χ2 for
the 49 magnetic reflections alone for the directions con-
sidered in the analysis of the X-ray data. Table 4 lists the
observed magnetic neutron scattering amplitudes and the
calculated amplitudes of the best model.

5 Discussion

The experimental study presented in this paper has two
main implications: one for the methodology of XRES and
one for the study of the magnetism of GdS. Let us first
discuss the implications for resonance-exchange scatter-
ing. XRES occurs at the absorption edges of the magnetic
elements, where the absorption length changes drastically
as the energy is tuned through the resonance. The correc-
tion of these absorption effects is an important prerequi-
site for a correct analysis of the resonance behaviour. The
resonance occurs right at the absorption edge, where the
detailed energy dependence of the absorption length de-
pends critically on the chemical bonding. Therefore, we do
not believe that absorption coefficients determined with a
metallic Gd foil can be used for an absorption correction.
To produce a GdS sample thin enough for an absorption
measurement in transmission geometry is prohibitive due
to the high risk of oxidation. Therefore, we decided to de-
termine the energy dependence of the absorption on our
single crystal sample itself via measurements of the fluo-
rescence yield. In Appendix A, the formalism is detailed,
which gives us the relation between fluorescence yield and
absorption length. These detailed absorption corrections
were necessary for an analysis of the resonance line shape.
Using a polarisation-analysis setup, we were able to show
that dipolar 2p → 5d transitions are dominant at the LII

and LIII edges. Quadrupolar transitions occur a few eV be-
low the dipolar transitions and are a factor of 300 weaker.
This is in contrast to the observations in holmium, where
large quadrupolar resonances were detected [7]. However,
polarisation-analysis experiments in other rare-earth met-
als show that the situation in holmium is rather excep-
tional [21–28]. This in term implies that in our case of
GdS, we do not probe the magnetism of the 4f levels di-
rectly, but instead only the induced moment in the 5d
conduction band. As mentioned in the introduction, the
induced moment in the conduction band is quite appre-
ciable and amounts to some 0.3 µB as determined in the
paramagnetic state from magnetization measurements.

Resonance-exchange scattering being a second-order
perturbation process, is not connected in a simple way to
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the order parameter, the sublattice magnetization. How-
ever, for the so-called fast collision approximation, Luo
et al. [9] were able to express the resonance amplitudes
in terms of the experimentally significant quantities, the
electron spin- and orbital moments. However, in our case,
where the resonance line widths are rather small, it is not
clear that the conditions of the fast-collision approxima-
tion hold. Moreover, changes in the crystal lattice occur
below the Néel temperature, which might influence the
structure of the 5d conduction band. Since our experiment
is only sensitive to the magnetism of the 5d conduction
band, we cannot be sure to measure the order parame-
ter in a resonance-exchange scattering experiment. It is
for this reason that we determined the temperature de-
pendence of the sublattice magnetization independently
using diffraction of hot neutrons. The excellent agreement
between the neutron and the X-ray results (Fig. 4) gives us
confidence that our resonance signal is indeed proportional
to the square of the order parameter and that the total
magnetic moment (as determined by neutron scattering)
and the 5d moment (from XRES) have a similar temper-
ature dependence. It is at first sight surprising that with
XRES we found a temperature dependence characteristic
for a S = 7/2 system: the X-ray experiment is sensitive to
the 5d moment only and the 5d electrons are itinerant and
do not correspond to S = 7/2. That a S = 7/2 behaviour
has been measured confirms the very strong coupling of
the 5d and 4f systems as required by RKKY theory.

Even after the absorption correction, the resonance
line shapes as a function of energy remain asymmetric:
the integrated intensities drop faster at the high energy
side as compared to the low energy side. We were able to
explain this effect partly with an interference of resonance
exchange scattering and non-resonant magnetic scatter-
ing. However, our model does not reproduce the resonance
line shapes in all detail. The deviations might be due to
the detailed shape of the density of states of the unoccu-
pied part of the conduction band. Our experimental res-
olution of about 4 eV is slightly larger than the average
level width of 2.5 eV of the LII and LIII resonances. Ac-
cording to [3], the width of the 5d conduction band is of
the order of 4 eV and therefore comparable to our res-
olution. A crystal-field splitting of the 5d levels cannot
be resolved with our experiment. Therefore, the detailed
shape of the density of states will influence our measured
line shapes. Here, an improved energy resolution of the
beamline would certainly be desirable, however, the spec-
troscopic information obtainable with XRES is limited by
the corehole lifetimes to some 2–3 eV. The level widths
of 2.2 and 2.8 eV for the LII and LIII edges, respectively,
lie systematically below the semi-empirical values tabu-
lated in [29]. These values are 4.0 eV at the Gd LII edge
and 4.3 eV at the LIII edge. However, newer experimental
data [30] show that these semi-empirical values based on
relativistic Hartree-Fock calculations systematically over-
estimate the line width. The experimental width measured
on an atomic beam of Gd atoms are 3.0 (7) and 3.8 (7) eV
for the LII and LIII edge, respectively. The values we found
are even smaller. We have to emphasis, however, that the

estimated standard deviation of 0.2 eV given in Table 2 is
based on a model assuming a pure Lorentzian line shape
of the resonance. In addition, at the time of the experi-
ment, the energy resolution of the monochromator of the
beamline W1 depended on the current of the storage ring
due to heatload effects. The 4 eV energy resolution of
the monochromator, which we used for the convolution
process, might therefore be an overestimate. These effects
are difficult to quantify, but we expect our error bars to
lie in the same order of magnitude as the values given
in [30]. Within these uncertainties, our values for the line
width and the values of [30] are in agreement. The position
of the resonance midway between the inflection point of
the absorption edge and the maximum absorption in the
white line is consistent with observations on other rare-
earths [21–28]. We found the absorption maximum about
1–2 eV above the edge. If the inflection point of µ(E) is
identified with the Fermi energy, our observations are con-
sistent with the energy level diagram given in [3], which
shows the center of gravity of the 5d conduction band at
about 1.5 eV above the Fermi level. As in the case of most
rare-earth metals [21–28], no resonance could be observed
at the LI edge. This is not surprising since the overlap in-
tegral between the core 1s state and the 4f or 5d states is
very small. However, the resonance effects at the LII and
LIII edges are remarkably large and amount to a factor of
100 or 300 in intensity compared to the non-resonant scat-
tering. Finally, we want to point out the surprising value
of 2.5 for the branching ratio of the resonance intensity
at the LII and LIII edges. Before absorption correction,
this ratio amounts to 1.7. This should be compared with
the data of GdSe [10]. There the intensity ratio in the
uncorrected raw data was found to be 1.6, which is in
agreement with our value. Since at the LII edge the ab-
sorption is larger than at the LIII edge (compare Fig. 2a
and 2b), the absorption-corrected value for the branch-
ing ratio has to be larger than 1.7, which holds in our
case. For GdSe, the absorption-corrected branching ratio
was quoted to be 1.3, but unfortunately the absorption
coefficients are not listed. We would have expected that
the absorption coefficients are similar for both compounds
and with a larger absorption at the LII edge, a branching
ratio larger than 2 would result for GdSe also. Clearly,
the branching ratio depends critically on the absorption
correction, but for both compounds a value larger than
1 has been established. Hill et al. [31] have pointed out a
systematic variation of the branching ratio across the rare-
earth series. Rare-earth ions with more than half-filled 4f
shells favour enhancements at the LIII edge, those with
less than half filling of the 4f shell tend to have larger LII

enhancements. A table of some observed branching ratios
is given by Watson et al. [27]. For the Gd3+ ion with 7
unpaired 4f electrons, a branching ratio of 1 is expected
and has been predicted in model calculations [32]. The
branching ratio of 2.5 found in the Gd chalcogenides de-
viates clearly from the simple atomic picture, in which
it is assumed that the 5d band is empty in the ground
state. In the model of [32], the spectrum is determined
mainly by the interactions of the excited electron with the
open 4f and 2p shells. The 5d occupancy is neglected with
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the argument that the corresponding magnetic moment of
0.3 µB is one order of magnitude smaller than that of the
4f shell. The deviation from the pure d0 LII/LIII ratio
given in [32] is a strong indication of the polarisation of
the 5d electrons present in the ground state. Note that
the effect of “breathing” i.e. a contraction and expansion
of the 5d orbitals due to the 5d-4f interaction discussed
in [32], can lead to an asymmetry in the line shape in ad-
dition to the interference effects discussed here. Given the
limited statistical accuracy of our data, we have not made
any attempt to take such an effect into account.

After discussing our findings in terms of the method-
ology for resonance exchange scattering, we now turn to
the implications for the magnetism of GdS. We were able
to show that the magnetic order of the Gd ions corre-
sponds to type-II antiferromagnetic order on the fcc lat-
tice, which supports earlier neutron scattering results [5].
We could not detect any magnetic signal at positions in
reciprocal space not corresponding to the AF type-II or-
der. We were able to measure the integrated intensities
of six magnetic reflections and to correct for the absorp-
tion factors. A determination of the spin direction in such
a highly symmetric compound based on XRES alone re-
mains difficult due to the few available data, but also due
to experimental problems, such as the uncertainties in the
absorption correction and the geometrical factors arising
from the finite beam and crystal sizes. Moreover, in such
highly symmetric compounds the lowering of the symme-
try at the magnetic phase transition gives rise to many do-
mains. The domain population plays an important role for
the measured intensities and is not known a priori. Since
lattice distortions can be observed, which are connected
to an elongation or compression of the [111] axis, it is rea-
sonable to assume that domains corresponding to different
symmetry-equivalent propagation directions are unequally
occupied due to internal strain. From the lattice distor-
tions alone, no deviation from the rhombohedral symme-
try can be detected. This leads us to believe that domains
with different symmetry-equivalent spin directions within
a given set of q-domains are equally populated. Within
this approximation, the calculated XRES intensities are
extremely sensitive to the spin direction (compare Tab. 1).
To give an example, the intensity of the 9

2
1
2

1
2 reflection in

our experimental units amounts to 53 for a spin direction
along [111], while it amounts to 1639 for a spin direction
along [21 1]. Clearly, looking at Table 1 we can exclude
a spin direction along the magnetic propagation vector.
However, with our limited data we can not finally decide
whether the spin direction is in the [111] plane or along a
[100] direction. This decision is left to our neutron data,
which are very reliable, since a homogeneous beam can be
assumed over the entire sample volume and since many
more reflections could be measured (49 unique reflections
compared to 6 for XRES). The refinement of the neutron
data under the above assumptions is consistent with the
interpretation that in GdS, the spin direction is perpen-
dicular to the magnetic propagation vector. The refined
value for the moment of 6.51(3) µB is consistent with spin

7/2, if we allow for quantum mechanical zero point spin
fluctuations.

Turning now to the temperature dependence of the
sublattice magnetization, we found independently with
XRES and neutron diffraction a simple mean-field be-
haviour for S = 7/2 which often holds for ionic com-
pounds. However, in the previous report on GdSe [10],
a clear deviation from such a behaviour has been found
with a dip in the measured intensity at approximately
37 K. It is surprising that two such similar compounds
should exhibit a drastically different temperature depen-
dence of the sublattice magnetization. One possible expla-
nation is the strong composition dependence observed for
the rare-earth chalcogenides [4]. Certainly, in our case,
the 9

2
1
2

1
2 reflection shows a smooth intensity variation

following mean-field theory. This smooth intensity vari-
ation is a strong indication that the model of Hulliger
and Siegrist [4] does not hold for our sample. In fact, we
observe lattice anomalies at 49 and 32 K, i.e. at temper-
atures which are consistently higher than the values re-
ported in [4]. There, the lattice distortions were reported
to occur at 35 to 40 and 16 to 18 K. Hulliger and Siegrist
predicted that at the first phase transition, the magnetic
moments should flip from the [111] into the [110] direction.
At the second phase transition, there should be a spin flip
into the (111) planes. With our experiment, we are very
sensitive to changes in the moment direction especially
at the 9

2
1
2

1
2 reflex. If the model of Hulliger and Siegrist

was correct, we should observe at the first phase transi-
tion a large increase in intensity by a factor of roughly 18
and at the second phase transition again an increase close
to a doubling of the intensity (compare Tab. 1). This is
not at all consistent with our observation, in which the
9
2

1
2

1
2 intensity variation with temperature is very smooth

and shows no anomalies at the temperatures where the
Bragg peaks split. One could argue that with XRES, we
are only sensitive to a near-surface layer of some 3 µm
thickness. In this layer, the moment orientation could de-
viate from the bulk. However, our neutron results depicted
in Figure 4 also show no indications for a spin reorienta-
tion. Therefore, we do not believe that spin flips occur
below the Néel temperature. The spin direction remains
the same throughout the ordered phase. In this case, the
question arises, what drives the low-temperature phase
transitions, if not the anisotropic exchange suggested by
Hulliger and Siegrist. Anisotropic exchange interactions
can only be very weak in these compounds with an or-
bital L = 0 ground state. On the other hand, magneti-
zation measurements [6] indicate the existence of higher-
order exchange interactions, such as biquadratic exchange
(proportional to (Si ·Sj)2) or three spin interactions (pro-
portional to (Si ·Sk)(Sk ·Sj)). These interactions can give
rise to additional low temperature phase transitions, as
can be easily shown for the case of a simple two-sublattice
antiferromagnet with bilinear and biquadratic exchange
only. With the sublattice magnetizations MA and MB for
the two sublattices, the relevant parts of the free-energy
density can be written as

F/V = β(MA ·MB)2 − αMA ·MB. (11)
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The angle ϕ between the sublattice magnetization MA

and MB can be obtained from the condition
(
δF
δϕ

)
T

= 0

and for antiferromagnetic bilinear exchange (α < 0), we
obtain the following solutions:

α < 0, β < 0 : ϕ = π

α < 0, β > 0 : ϕ = π for M2 <
−α
2β

(12)

cosϕ =
α

2βM2
for M2 >

−α
2β
·

For β < 0 no additional phase transitions occur. For β > 0
a collinear antiferromagnetic structure is realized close to
TN. At lower temperatures, as M2 exceeds −α2β , a canted
antiferromagnetic structure is predicted with a smooth
temperature variation of the canting angle ϕ. In a multido-
main sample, it is very difficult to observe such a canting
with diffraction methods. However, for the canting to oc-
cur, the energy density for biquadratic exchange has to be
comparable to the energy density for bilinear exchange.
On the other hand it has been shown in [33] that even
a small contribution of biquadratic exchange drastically
alters the shape of the sublattice magnetization curves, a
prediction which is inconsistent with our observation of
a simple mean-field curve. Therefore, within the present
study, the driving forces for the low-temperature phase
transitions could not be identified.

That GdS is indeed a very isotropic magnetic system
is proven by the critical behaviour close to the Néel tem-
perature. Since in such a highly symmetric compound, the
critical fluctuations occur around all symmetry-equivalent
positions in reciprocal space, the diffuse scattering for a
given magnetic superlattice point is rather weak. There-
fore, we could only measure the critical behaviour of the
sublattice magnetization and not those of the suscepti-
bility and the correlation length. In two independent ex-
periments with different momentum space resolutions, a
critical exponent β was determined, which agrees very
well with the predictions of renormalisation group the-
ory for a pure Heisenberg model [34]. While the weakness
of the signal above TN did not allow a detailed analysis
of the critical diffuse scattering, it still became clear that
a sharp component persists up to several degrees above
TN. This sharp component has been observed in many
other magnetic and non-magnetic systems (e.g. [35–37]).
It is believed that this component is connected with scat-
tering from a near-surface layer and should therefore be
enhanced for our experiments at the absorption edges.

6 Summary and conclusions

In summary we were able to show how X-ray resonance
exchange scattering can be an important complementary
tool to neutron scattering for the study of the magnetism
of strongly neutron-absorbing materials. By polarisation
analysis, we could show that in GdS, dipolar transitions
largely dominate the resonances at the LII and LIII ab-
sorption edges. By comparing to neutron diffraction, we

could prove that the resonance signal is indeed propor-
tional to the square of the order parameter. We observed
a temperature dependence characteristic for a S = 7/2
system, which gives evidence of the intimate coupling of
the 5d and 4f systems. The asymmetry of the resonance
line shapes could be interpreted as an interference effect
between non-resonant magnetic scattering and resonance
exchange scattering. The branching ratio of 2.5 between
the LII and LIII absorption edges deviates from the pure
d0 value of 1 giving a strong indication for the polarisation
of the 5d electrons.

We could verify that GdS shows antiferromagnetic
type II order. Under the assumption of an equal popula-
tion of S-domains, a refinement of the neutron diffraction
data gave a spin direction perpendicular to the magnetic
propagation vector with a value for the sublattice mag-
netisation of 6.51(3) µB. While we could observe lattice
distortions below the Néel temperature, we did not find
any indications that these distortions are connected with
spin-flip transitions. In agreement with the pure L = 0
ground state, we found the critical behaviour for the sub-
lattice magnetisation to be Heisenberg-like. A sharp com-
ponent in the critical scattering was observed above the
Néel temperature.

The XRES study of GdS presented here forms the ba-
sis for a study of the mixed crystal system GdxEu1−xS,
which will be presented in a following paper [38]. In this
study, XRES has been used to determine element-specific
magnetic order in this spin glass system.

We want to thank Mrs. Cornelisen, University of Hamburg, for
performing the microprobe analysis. We have benefited from
discussions with J.R. Schneider and U. Köbler. Financial sup-
port was provided by the BMBF under contract number 03-
BR4DES-2.

Appendix A: Absorption correction

In Figure A.1 the geometry of the scattering process used
for the absorption correction is depicted. In all of our ex-
periments, the sample can be described as a platelet of
infinite surface area (the crystal dimensions were always
much larger than the beamsize) and of infinite thickness
(the crystals were several mm thick compared to an ab-
sorption length of some µm). The incident beam can be
described by the intensity I0, the unit wave vector k̂, the
photon energy E and the angle of incidence α. The corre-
sponding quantities for the scattered beam are denoted by
I ′, k̂′, E′ and β. j0(x, y) denotes the incident flux distribu-
tion in the beam. Along ξ the intensity decays according
to:

j(ξ;x, y) = j0(x, y)e−µ(E)ξ. (A.1)

If a photon is absorbed at depth z, the probability that a
fluorescence photon is being emitted into the direction of
k̂′ is:

W =
1

4π
ωµX(E)∆Ω dξ. (A.2)
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µX(E) =

��
IF(E)

�
µ(E1) f(E) + µ(EF)

sinα

sin β

�
− IF(E1) f(E)

�
µ(E1) + µ(EF)

sinα

sin β

��
[µ(E2)− µ(E1)f(E2)]

�
�
IF(E2)

�
µ(E2) + µ(EF)

sinα

sin β

�
− IF(E1)

�
µ(E1) + µ(EF)

sinα

sin β

�
f(E2)− IF(E)(µ(E2)− µ(E1)f(E2))

� · (A.8)

Fig. A.1. Geometry of the scattering process assumed for the
absorption correction.

Here µX(E) is the resonant contribution to the absorp-
tion coefficient (see below), ω the fluorescence yield and
∆Ω the solid-angle element in k̂′ direction. The intensity
contribution from the depth z scattered into the detector
element ∆Ω is given by

dj′(z;x, y) = j(ξ;x, y) dξ
ωµX(E)

4π
∆Ω e−µ(E′)η

= j0(x, y) e
−
 
µ(E)

z

sinα
+µ(E′)

z

sinβ

!

× ωµX(E)
4π

∆Ω d
( z

sinα

)
· (A.3)

The total intensity is obtained by integrating (A.3) and
one obtains:

I ′ =
∫

dxdydj′ = I0ωµ
X(E)

∆Ω

4π
1

µ(E) + µ(E′)
sinα
sinβ

·

(A.4)

In the vicinity of the edge, one fluorescence line changes
drastically in intensity as can be seen in Figure 1. This
intensity variation can be taken as a measure of the vari-
ation of the absorption cross section through the edge.
Besides this resonant contribution µX(E), a slowly vary-
ing contribution µR(E) has to be considered to give the
absorption coefficient:

µ(E) = µR(E) + µX(E). (A.5)

In many cases, the slowly varying part µR can be described
by µR ∝ λ3. In what follows, we assume that two energies
E1 and E2 well below and well above the absorption edge
exist, for which tabulated values of µ(E) can be found.
These reference energies are used to determine the abso-
lute value of the absorption coefficient, while its variation

throughout the edge is obtained from the energy depen-
dence of the fluorescence yield. In what follows, we assume
the following functional form for µR:

µR(E) = µ(E1) f(E,E1)

with f(E,E1) := f(E) := E3
1/E

3. (A.6)

E1 was chosen so that µX vanishes, which implies
µ(E1) = µR(E1). The intensity in the fluorescence chan-
nel has a background contribution and the fluorescence
contribution at the X edge.

These intensities have to be absorption corrected ac-
cording to (A.4) to yield the following expression for the
total fluorescence intensity:

IF (E) =
C1 f(E) + C2µ

X(E)

µ(E1)f(E) + µX(E) + µ(EF)
sinα
sinβ

· (A.7)

The photon energies E1, E2 and the energy of the fluores-
cence photon EF are far from the energy of the absorp-
tion edge and thus can safely be taken from tabulated
values [39]. The measured values of the fluorescence in-
tensities at the energies E1 and E2 can then be used to
determine the coefficients C1 and C2. With these values of
the coefficients C1 and C2, µX can be obtained from the
measured fluorescence intensities as follows:

see equation (A.8) above

Finally the total absorption coefficient µ(E) is given by
the sum of the background and edge contribution accord-
ing to (A.5) and (A.6). With this coefficient µ(E), the
Bragg data can be corrected using

I ′ = I0
1

µ(E)
(

1 +
sinα
sinβ

) · (A.9)
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